Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.864
Filtrar
1.
Sci Rep ; 14(1): 7674, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561370

RESUMO

In the absence of evidence-based guidance on the impact of hydroxychloroquine (HCQ) blood concentration on efficacy and ocular toxicity in systemic lupus erythematosus (SLE), the clinical monitoring of HCQ blood concentration is not yet widely performed, which raised concerns about the necessity of conducting HCQ blood concentration monitoring. In this retrospective study, we consecutively enrolled 135 patients with SLE who received HCQ treatment for more than 6 months from July 2022 to December 2022. Ocular toxicity was evaluated by collecting relevant retinal parameters using optical coherence tomography angiography (OCTA). Therapeutic efficacy was evaluated using the SLE disease activity index (SLEDAI) and relevant clinical parameters. HCQ blood concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Spearman correlation analysis revealed that the cumulative dose of HCQ was positively correlated with the foveal avascular zone (FAZ) perimeter and FAZ area (r = 0.734, P < 0.001; r = 0.784, P < 0.001). Meanwhile, the treatment duration of HCQ was positively correlated with FAZ perimeter and FAZ area (r = 0.761, P < 0.001; r = 0.882, P < 0.001). The univariate and multivariate logistic regression analyses indicated that HCQ blood concentration was associated with the disease activity of patients with SLE (odds ratio 0.994, 95% CI 0.990-0.999). HCQ blood concentration may be an important factor in assessing the therapeutic effectiveness of SLE patients. The HCQ-related ocular toxicity was a long-term effect related to long term exposure, rather than the blood concentration of HCQ at the time of testing. More importantly, when addressing HCQ-related ocular toxicity, it may be crucial to pay attention to the cumulative dose and treatment duration of HCQ.


Assuntos
Antirreumáticos , Lúpus Eritematoso Sistêmico , Humanos , Hidroxicloroquina/efeitos adversos , Antirreumáticos/efeitos adversos , Espectrometria de Massas em Tandem , Estudos Retrospectivos , Neuropatia Óptica Tóxica/tratamento farmacológico , Lúpus Eritematoso Sistêmico/tratamento farmacológico
2.
Sci Adv ; 10(14): eadl1884, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579002

RESUMO

Introducing natural Bouligand structure into synthetics is expected to develop high-performance structural materials. Interfibrous interface is critical to load transfer, and mechanical functionality of bioinspired Bouligand structure yet receives little attention. Here, we propose one kind of hierarchical and reconfigurable interfibrous interface based on moderate orderliness to mechanically reinforce bioinspired Bouligand structure. The interface imparted by moderate alignment of adaptable networked nanofibers hierarchically includes nanofiber interlocking and hydrogen-bonding (HB) network bridging, being expected to facilitate load transfer and structural stability through dynamic adjustment in terms of nanofiber sliding and HB breaking-reforming. As one demonstration, the hierarchical and reconfigurable interfibrous interface is constructed based on moderate alignment of networked bacterial cellulose nanofibers. We show that the resultant bioinspired Bouligand structural material exhibits unusual strengthening and toughening mechanisms dominated by interface-microstructure multiscale coupling. The proposed interfibrous interface enabled by moderate orderliness would provide mechanical insight into the assembly of widely existing networked nanofiber building blocks toward high-performance macroscopic bioinspired structural assemblies.

3.
Nat Commun ; 15(1): 3208, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615045

RESUMO

Investigations of one-dimensional segmented heteronanostructures (1D-SHs) have recently attracted much attention due to their potentials for applications resulting from their structure and synergistic effects between compositions and interfaces. Unfortunately, developing a simple, versatile and controlled synthetic method to fabricate 1D-SHs is still a challenge. Here we demonstrate a stress-induced axial ordering mechanism to describe the synthesis of 1D-SHs by a general under-stoichiometric reaction strategy. Using the continuum phase-field simulations, we elaborate a three-stage evolution process of the regular segment alternations. This strategy, accompanied by easy chemical post-transformations, enables to synthesize 25 1D-SHs, including 17 nanowire-nanowire and 8 nanowire-nanotube nanostructures with 13 elements (Ag, Te, Cu, Pt, Pb, Cd, Sb, Se, Bi, Rh, Ir, Ru, Zn) involved. This ordering evolution-driven synthesis will help to investigate the ordering reconstruction and potential applications of 1D-SHs.

4.
Plant Cell Rep ; 43(5): 119, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632145

RESUMO

KEY MESSAGE: Mutants lacking functional HYD2 homoeologs showed improved seedling growth, but comparable or increased susceptibility to salt stress in tillering plants, suggesting a developmentally restricted role of HYD2 in salt response. Salinity stress threatens global food security by reducing the yield of staple crops such as wheat (Triticum ssp.). Understanding how wheat responds to salinity stress is crucial for developing climate resilient varieties. In this study, we examined the interplay between carotenoid metabolism and the response to salt (NaCl) stress, a specific form of salinity stress, in tetraploid wheat plants with mutations in carotenoid ß-hydroxylase 1 (HYD1) and HYD2. Our investigation encompassed both the vulnerable seedling stage and the more developed tillering stage of wheat plant growth. Mutant combinations lacking functional HYD2 homoeologs, including hyd-A2 hyd-B2, hyd-A1 hyd-A2 hyd-B2, hyd-B1 hyd-A2 hyd-B2, and hyd-A1 hyd-B1 hyd-A2 hyd-B2, had longer first true leaves and slightly enhanced root growth during germination under salt stress compared to the segregate wild-type (control) plants. Interestingly, these mutant seedlings also showed decreased levels of neoxanthin and violaxanthin (xanthophylls derived from ß-carotene) and an increase in ß-carotene in roots. However, tillering hyd mutant and segregate wild-type plants generally did not differ in their height, tiller count, and biomass production under acute or prolonged salt stress, except for decreases in these parameters observed in the hyd-A1 hyd-B1 hyd-A2 hyd-B2 mutant that indicate its heightened susceptibility to salt stress. Taken together, these findings suggest a significant, yet developmentally restricted role of HYD2 homoeologs in salt-stress response in tetraploid wheat. They also show that hyd-A2 hyd-B2 mutant plants, previously demonstrated for possessing enriched nutritional (ß-carotene) content, maintain an unimpaired ability to withstand salt stress.


Assuntos
Anodontia , Plântula , beta Caroteno , Plântula/metabolismo , beta Caroteno/metabolismo , Triticum/genética , Tetraploidia , Carotenoides/metabolismo , Estresse Salino , Salinidade
5.
Small Methods ; 8(4): e2301487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651305
6.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637433

RESUMO

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris , Candida , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
7.
Chem Biodivers ; : e202302111, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453650

RESUMO

Phytochemical studies on 95 % ethanol extract of the heartwood of Solanum verbascifolium L. resulted in the isolation of one new amide derivative (1), and 21 known phenylpropanoids compounds. The structures were characterized by spectral analysis and high-resolution mass spectrometric analysis. The anti-inflammatory activity of amide compounds 1-4 and 6-9 by investigating their impact on the release of nitric oxide (NO) in MH-S cells. Our findings unveiled significant inhibitory effects on NO secretion. Compound 1 exhibited robust dose-dependent suppression, with pronounced inhibition observed at both 20 µM (P<0.01) and 40 µM (P<0.01). Furthermore, compound 9 demonstrated noteworthy inhibitory effects at 40 µM (P<0.01). Similarly, compounds 3 and 4 displayed substantial inhibition of NO secretion at the same concentration, although the significance level was slightly lower (P<0.05). It is expected that there is a substantial association between the anti-inflammatory activities of amides and their targets, specifically PTGS2, by combining network pharmacology and molecular docking techniques. This discovery emphasizes amides' potential as an interesting subject for additional study in the realm of anti-inflammatory medications.

8.
Nano Lett ; 24(14): 4082-4090, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38526914

RESUMO

The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (∼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to ∼50 µC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.

9.
Adv Mater ; : e2309770, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447017

RESUMO

Percutaneous thermotherapy, a minimally invasive operational procedure, is employed in the ablation of deep tumor lesions by means of target-delivering heat. Conventional thermal ablation methods, such as radiofrequency or microwave ablation, to a certain extent, are subjected to extended ablation time as well as biosafety risks of unwanted overheating. Given its effectiveness and safety, percutaneous thermotherapy gains a fresh perspective, thanks to magnetic hyperthermia. In this respect, an injectable- and magnetic-hydrogel-construct-based thermal ablation agent is likely to be a candidate for the aforementioned clinical translation. Adopting a simple and environment-friendly strategy, a magnetic colloidal hydrogel injection is introduced by a binary system comprising super-paramagnetic Fe3O4 nanoparticles and gelatin nanoparticles. The colloidal hydrogel constructs, unlike conventional bulk hydrogel, can be easily extruded through a percutaneous needle and then self-heal in a reversible manner owing to the unique electrostatic cross-linking. The introduction of magnetic building blocks is exhibited with a rapid magnetothermal response to an alternating magnetic field. Such hydrogel injection is capable of generating heat without limitation of deep penetration. The materials achieve outstanding therapeutic results in mouse and rabbit models. These findings constitute a new class of locoregional interventional thermal therapies with minimal collateral damages.

10.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Assuntos
Ganoderma , Materia Medica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Materia Medica/farmacologia , Espectrometria de Massas em Tandem , Fibrose , Pulmão
11.
Eur J Med Res ; 29(1): 174, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491477

RESUMO

O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Glicosilação , Coração , Processamento de Proteína Pós-Traducional , Sistema Nervoso
12.
Ying Yong Sheng Tai Xue Bao ; 35(2): 523-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523111

RESUMO

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.


Assuntos
Ecossistema , Oxigênio , Qualidade da Água , Biodiversidade , Eutrofização , Monitoramento Ambiental
13.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485340

RESUMO

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Assuntos
Heme Oxigenase-1 , Microglia , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem da Esquiva , Citocinas/metabolismo , Interleucina-6/metabolismo , Comportamento Social , Tolerância Imunológica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
14.
Int J Biol Macromol ; 265(Pt 2): 130945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493818

RESUMO

INTRODUCTION: Immune checkpoint inhibitor therapy is a highly promising strategy for clinical treatment of cancer. Among these inhibitors, ipilimumab stands out for its ability to induce cytotoxic T cell proliferation and activation by binding to CTLA-4. However, ipilimumab also gives rise to systemic immune-related adverse effects and tumor immune evasion, limiting its effectiveness. OBJECTIVES: We developed IFNγ-ipilimumab and confirmed that the addition of INF-γ does not alter the fundamental properties of ipilimumab. RESULTS: IFNγ-ipilimumab can be activated by matrix metalloproteinases, thereby promoting the IFNγ signaling pathway and enhancing the cytotoxicity of T cells. In vivo studies demonstrated that IFNγ-ipilimumab enhances the therapeutic effect of ipilimumab against colorectal cancer by increasing CD8+ and CD4+ lymphocyte infiltration into the tumor area and inducing MHC-I expression in tumor cells. Mice treated with IFNγ-ipilimumab showed higher survival rates and body weight, as well as lower CD4+ and CD8+ lymphocyte activation rates in the blood and reduced organ damage. CONCLUSION: IFNγ-ipilimumab improved the effectiveness of ipilimumab while reducing its side effects. It is likely that future immunotherapies would rely on such antibodies to activate local cancer cells or immune cells, thereby increasing the therapeutic effectiveness of cancer treatments and ensuring their safety.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos
15.
Drug Test Anal ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488339

RESUMO

5F-MDMB-PICA, an indole-type synthetic cannabinoid (SC), was classified illicit globally in 2020. Although the extensive metabolism of 5F-MDMB-PICA in the human body warrants the development of robust analytical methods for metabolite detection and quantification, a current lack of reference standards for characteristic metabolites hinders such method creation. This work described the synthesis of 18 reference standards for 5F-MDMB-PICA and its possible Phase I metabolites, including three hydroxylated positional isomers R14 to R16. All the compounds were systematic characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. Furthermore, two methods were developed for the simultaneous detection of all standards using liquid chromatography-tandem mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. By comparison with authentic samples, R17 was identified as a suitable urine biomarker for 5F-MDMB-PICA uptake.

16.
Diagnostics (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38472940

RESUMO

Bladder cancer (BCa) is a significant health issue and poses a healthcare burden on patients, highlighting the importance of an effective detection method. Here, we developed a urine DNA methylation diagnostic panel for distinguishing between BCa and non-BCa. In the discovery stage, an analysis of the TCGA database was conducted to identify BCa-specific DNA hypermethylation markers. In the validation phase, DNA methylation levels of urine samples were measured with real-time quantitative methylation-specific PCR (qMSP). Comparative analysis of the methylation levels between BCa and non-BCa, along with the receiver operating characteristic (ROC) analyses with machine learning algorithms (logistic regression and decision tree methods) were conducted to develop practical diagnostic panels. The performance evaluation of the panel shows that the individual biomarkers of ZNF671, OTX1, and IRF8 achieved AUCs of 0.86, 0.82, and 0.81, respectively, while the combined yielded an AUC of 0.91. The diagnostic panel using the decision tree algorithm attained an accuracy, sensitivity, and specificity of 82.6%, 75.0%, and 90.9%, respectively. Our results show that the urine-based DNA methylation diagnostic panel provides a sensitive and specific method for detecting and stratifying BCa, showing promise as a standard test that could enhance the diagnosis and prognosis of BCa in clinical settings.

17.
Chem Commun (Camb) ; 60(19): 2669-2672, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38351890

RESUMO

Reported herein is a photochemical strategy for C(sp3)-H azolation of ethers via a hydrogen-atom transfer and radical-polar crossover process, offering efficient access to valuable N-alkylated azoles under visible-light irradiation. The protocol is metal-free and photocatalyst-free, and exhibits good to excellent yields and broad substrate scope with regard to azoles. EPR experiments provide evidence for the formation of intermediates formed in situ.

18.
Zhen Ci Yan Jiu ; 49(2): 145-154, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413035

RESUMO

OBJECTIVES: To observe the effects of moxibustion at "Zusanli" (ST36) on the expression levels of tumor necrosis factor (TNF)-α, TNF receptor 1 (TNF-R1), p38 mitogen-activated protein kinase (P38 MAPK), and transient receptor potential vanilloid 1 (TRPV1) in the colon tissue of mice with chronic ulcerative colitis (UC), so as to explore the underlying mechanisms of moxibustion in improving visceral hypersensitivity in chronic UC. METHODS: Male C57BL/6J mice were randomly divided into normal group, normal with moxibustion (NM) group, model group, and model with moxibustion (MM) group, with 10 mice in each group. The chronic UC model was established by drinking 2.5% dextran sodium sulfate for 3 cycles. Mice in the NM and MM groups received moxibustion at ST36 for 20 min, 5 days per week with a 2-day break, for a total of 4 weeks. The disease activity index (DAI) score of each group was evaluated before and after treatment. The minimum volume threshold of abdominal wall retraction reflex (AWR) was measured to observe the intestinal sensitivity of mice. The colon length was measured. The pathological changes of colon tissue were observed by HE staining. The expression of mucin in colon goblet cells was detected by periodate Scheff staining. The intestinal fibrosis was observed by Masson staining. The number of trypsin-positive cells (i.e., mast cell) and the expression level of TNF-α in colon tissue were detected by immunofluorescence staining. The expression levels of TNF-R1, P38 MAPK and TRPV1 in colon tissue were detected by immunohistochemistry. RESULTS: Compared with the normal group after treatment, the model group showed increased DAI score (P<0.001), decreased AWR minimum volume threshold (P<0.01), shortened colon length (P<0.001), significant inflammatory infiltration in the colon tissue, reduced mucin secretion (P<0.01), increased collagen fiber deposition (P<0.001), and elevated expression levels of TNF-α, TNF-R1, P38 MAPK, and TRPV1 (P<0.001, P<0.01, P<0.05). Compared with the model group, the MM group showed decreased DAI score (P<0.01), increased AWR minimum volume threshold (P<0.001), elongated colon length (P<0.001), reduced inflammatory cell infiltration, improved integrity of mucosal glandular structure, enhanced mucin secretion (P<0.01), decreased collagen fiber deposition (P<0.001), decreased number of mast cells in the colon tissue (P<0.001), and decreased expression levels of TNF-α, TNF-R1, P38 MAPK, and TRPV1 (P<0.001, P<0.01, P<0.05). There were no significant differences in the above index between the NM group and the normal group. CONCLUSIONS: Moxibustion can reduce visceral hypersensitivity, alleviate inflammatory infiltration and fibrotic damage in the colon tissue of mice with chronic UC. These effects may be associated with the down-regulation of TNF-α, TNF-R1, P38 MAPK, and TRPV1 expression in colon.


Assuntos
Colite Ulcerativa , Moxibustão , Ratos , Camundongos , Masculino , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Receptores Tipo I de Fatores de Necrose Tumoral , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mucinas , Colágeno
19.
Int J Cancer ; 154(12): 2075-2089, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367273

RESUMO

Females with existing high-risk HPV (HR-HPV) infections remain at risk of subsequent multiple or recurrent infections, on which benefit from HPV vaccines was under-reported. We pooled individual-level data from four large-scale, RCTs of AS04-HPV-16/18 vaccine to evaluate efficacy and immunogenicity in females DNA-positive to any HR-HPV types at first vaccination. Females receiving the AS04-HPV-16/18 vaccine in the original RCTs constituted the vaccine group in the present study, while those unvaccinated served as the control group. Vaccine efficacy (VE) against new infections and associated cervical intraepithelial neoplasia (CIN) 2+ in females DNA-negative to the considered HR-HPV type but positive to any other HR-HPV types, VE against reinfections in females DNA-positive to the considered HR-HPV type but cleared naturally during later follow-up, and levels of anti-HPV-16/18 IgG were assessed. Our final analyses included 5137 females (vaccine group = 2532, control group = 2605). The median follow-up time was 47.88 months (IQR: 45.72-50.04). For the prevention of precancerous lesions related to the non-infected HR-HPV types at baseline, VE against HPV-16/18 related CIN 2+ was 82.70% (95% CI: 63.70-93.00%). For the prevention of reinfections related to the infected HR-HPV types following natural clearance, VE against HPV-16/18 12MPI was non-significant (p > .05), albeit robust immunity persisted for at least 48 months. Females with existing HR-HPV infections at first vaccination still benefit from vaccination in preventing precancers related to the non-infected types at baseline. VE against reinfections related to the infected types following natural clearance remains to be further investigated.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16 , Vacinas contra Papillomavirus/uso terapêutico , Reinfecção/complicações , Papillomavirus Humano 18 , Vacinação , DNA
20.
Natl Sci Rev ; 11(3): nwad333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38333231

RESUMO

Polysaccharide-based membranes with excellent mechanical properties are highly desired. However, severe mechanical deterioration under wet conditions limits their biomedical applications. Here, inspired by the structural heterogeneity of strong yet hydrated biological materials, we propose a strategy based on heterogeneous crosslink-and-hydration (HCH) of a molecule/nano dual-scale network to fabricate polysaccharide-based nanocomposites with robust wet mechanical properties. The heterogeneity lies in that the crosslink-and-hydration occurs in the molecule-network while the stress-bearing nanofiber-network remains unaffected. As one demonstration, a membrane assembled by bacterial cellulose nanofiber-network and Ca2+-crosslinked and hydrated sodium alginate molecule-network is designed. Studies show that the crosslinked-and-hydrated molecule-network restricts water invasion and boosts stress transfer of the nanofiber-network by serving as interfibrous bridge. Overall, the molecule-network makes the membrane hydrated and flexible; the nanofiber-network as stress-bearing component provides strength and toughness. The HCH dual-scale network featuring a cooperative effect stimulates the design of advanced biomaterials applied under wet conditions such as guided bone regeneration membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...